柏原正树(masaki kashiwara)
d模(d-module)的工具。d模是一种由微分方程编织而成的精巧数学结构,是广泛应用于科学领域的、最基本的数学工具之一。
发现了所有不同类型的d模,以及它们之间的关联。
构建这些d模结构的基本单元是微分方程。微分方程属于数学分析的范畴,它描述变量之间的关系,处于现代科学的核心。例如,移动物体的速度就是通过微分方程表达的,它描述了运动距离与经过的时间之间的关系。
d模使用的框架来自于数学中一个抽象得多的分支——代数。在代数中,所有细节都被剥离,只专注于所涉及的抽象结构的核心。
d模连接了分析与代数这两个数学领域,使得一个领域的研究对象和方法可以进入另一个领域。柏原正树极大地发展了d模理论,使之成为一个全新的领域——代数分析的基础。
我们知道一个方程可能有多个解。例如,方程 sin(x)=0 有 0、π、2π、kπ这一系列解。我们称方程是多值的。
另外,有些函数在一些点是没有定义的。例如函数1/x,当 x 趋近 0 时,函数值趋向于无穷大,它在 x=0 处是没有定义的。我们称这样的点为奇点。在奇点附近,方程的行为变得怪异。
如果这种多值性出现在奇点附近,而不是像sin函数一样周期性地变化,就会成为一个特殊的问题。
数学家用方程对应的单值群(monodromy group)来理解这种奇怪的行为。这种群描述当方程的解在奇点附近变化时产生的空间形状,也就是空间的拓扑结构。
在复平面上,函数log(z)在z=0处存在一个奇点。复平面上绕奇点整数圈的z,其log(z)的值都是相同的,也就是说,在复平面上,log(z)函数是多值的。如果围绕奇点构建一个如图所示的螺旋曲面,那么当z环绕奇点时,log(z)将从一个单叶分支进入另一个单叶分支,而不是回到原来的复平面,也就是说,函数变成了单值的。
线性微分方程是一种特殊类型的微分方程。任何一个线性微分方程都有着与之关联的单值群。然而,黎曼-希尔伯特问题问的是一个相反的问题:对于每一个单值群,是不是也存在一个相关联的线性微分方程,它在奇点附近的行为由单值群来描述?
包含单个变量的线性微分方程已经在二十世纪六十年代解决了。在八十年代,柏原正树找到了问题的答案。他展示了对于任意一个单值群,如何找到相关联的线性微分方程,也就是说,找到在奇点附近具有特定行为的所有线性微分方程。
这是一个突出的成果,而且,他的方法为代数分析与拓扑这两个领域搭建了一个重要的桥梁。
表示论(representation theory)。这是