马尔科夫链的一个常见例子是简化的股票涨跌模型:若一天中某股票上涨,则明天该股票有概率p开始下跌,1-p继续上涨;若一天中该股票下跌,则明天该股票有概率q开始上涨,1-q继续下跌。该股票的涨跌情况是一个马尔可夫链,且定义中各个概念在例子中有如下对应:
随机变量:第t天该股票的状态;状态空间:“上涨”和“下跌”;指数集:天数。
条件概率关系:按定义,即便已知该股票的所有历史状态,其在某天的涨跌也仅与前一天的状态有关。
无记忆性:该股票当天的表现仅与前一天有关,与其他历史状态无关(定义条件概率关系的同时定义了无记忆性)。
停时前后状态相互独立:取出该股票的涨跌记录,然后从中截取一段,我们无法知道截取的是哪一段,因为截取点,即停时t前后的记录(t-1和t+1)没有依赖关系。
出于扩大极限定理应用范围的目的,马尔科夫在本世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大的概率取什么值,完全由它前面的一个变量来决定,而与它更前面的那些变量无关。这就是被后人称作马尔科夫链的著名概率模型。也是在这篇论文里,马尔科夫建立了这种链的大数定律。
用一个通俗的比喻来形容,一只被切除了大脑的白鼠在若干个洞穴间的蹿动就构成一个马尔科夫链。因为这只白鼠已没有了记忆,瞬间而生的念头决定了它从一个洞穴蹿到另一个洞穴;当其所在位置确定时,它下一步蹿往何处与它以往经过的路径无关。这一模型的哲学意义是十分明显的,用前苏联数学家辛钦(1894-1959〕的话来说,就是承认客观世界中有这样一种现象,其未来由现在决定的程度,使得我们关于过去的知识丝毫不影响这种决定性。这种在已知“现在”的条件下,“未来”与“过去”彼此独立的特性就被称为马尔科夫性,具有这种性质的随机过程就叫做马尔科夫过程,其最原始的模型就是马尔科夫链。
这即是对荷兰数学家克里斯蒂安·惠更斯(ch. huygens, 1629-1659)提出的无后效原理的概率推广,也是对法国数学家拉普拉斯(p. s. laplace, 1749-1827)机械决定论的否定。
这里应该指出,马尔科夫所建立的概率模型不但具有深刻的哲学意义,而且具有真实的物质背景,在他的工作之前或同时,一些马尔科夫链或更复杂的随机过程的例子已出现在某些人的研究中,只不过这些人没有自觉地认识到这类模型的普遍意义或用精确的数学语言表述出来罢了。例如苏格兰植物学家布朗( r. brown, 1773-1858)于1827年发现的悬浮微粒的无规则运动、英格兰遗传学家高尔顿(f.galton