不变,而每个晶体管的成本不断下降。但是,这一趋势可能会在目前终止,其主要原因就是光刻技术已变得更为昂贵。
在过去10年中,印刷细微结构方面的困难使得成品硅片单位面积的制造成本以每年百分之十的速度递增。由于每年每个晶体管的面积会比去年同期缩小百分之二十五左右,每个晶体管的成本仍会逐年递减。但是,当抵达某个临界点时,制造成本的增加速度会超过晶体管成本的下降速度,从而导致下一代晶体管的成本高于上代产品。
如果光刻技术的成本快速攀升,我们所熟知的摩尔定律一定会很快失效。而且现在已经有迹象表明摩尔定律的终结将很快到来。目前的高级芯片均采用浸没式光刻工艺制成,该工艺是将水浸的硅晶片曝露于波长为193纳米的深紫外光线下进行图案刻蚀。按照规划,下一代光刻工艺会采用波长更短的极紫外光。然而,这项本应在2004年就投入使用的技术在实际应用中却被一拖再拖,因此芯片制造商们不得不采用一些权宜之计,例如双重图形光刻。所谓双重图形光刻就是重复进行某些步骤以打造最为精细的元件结构。双重图形光刻工艺耗费的时间是单次图形光刻的两倍。尽管如此,芯片制造商们仍在考虑采用三重甚至四重图形光刻,而这些做法无疑会进一步提高制造成本。若干年后,当我们回顾2015年时也许会将其视为转折之年,晶体管的成本从这一年开始停止下滑,转而节节攀升。
━━━━
我因曾在光刻技术会议上大胆宣告摩尔定律即将失效而被业界熟知。然而,真正的事实却是,我并不认为摩尔定律会就此消亡。相反,我倒认为这一定律即将再次发生演变。
未来,半导体行业的创新将继续下去,但这些创新并不会系统性地降低晶体管的成本。相反,半导体行业的进步将以新形式的集成来定义,即将每种芯片的不同功能集成在一起,降低整个系统的成本。这听上去也许与摩尔定律1.0时代非常相像,但届时我们要做的并非把不同的逻辑电路整合在一块更大面积的芯片上,而是将长久以来都与硅晶芯片相互分离的非逻辑功能并入芯片之中。
这方面的一个早期范例便是现代手机的摄像头,这种摄像头通过直通硅晶穿孔技术将图像传感器直接合并在数字信号处理器中。除此之外,后续还会有其他的范例不断涌现。芯片设计者才刚刚开始探索如何集成微机电系统,这类系统可用于制造袖珍加速器、陀螺仪,甚至还有继电器逻辑电路。同样,用来开展生物鉴定和环境测试的微流体传感器亦能够集成在芯片中。
所有的这些技术都能够让我们把一块数字互补金属氧化物半导体(cmos)芯片与外部的模拟世界直接连接起来。如果新的传感器和驱动器能够充分利用硅晶加工中极为常见的低成本大批量生产工艺,这将会产生巨大的经济影响。
然而,从经济角度而言,这个摩尔定律再次发挥作用的新阶段——我将其称为摩尔定律3.0,而半导