第一百九十九章 神秘的公式(7.6K)

作者:新手钓鱼人 加入书签推荐本书

±n±p)/t{0,2}k(z±s±n±p)/t{w(x0)}k(z±s±n±p)/t...........

le(sx)(z/t)=[∑(1/c(±s±p)-1{nxi-1}]-1=n(1-x(p) p-s)-1。

这是一个由正则化组合系数和解析延拓组成的复合方程组,解起来非常的麻烦。

当时徐云做出的唯一判断,便是最后一道方程的解一定是个比值。

不过今天有了足够的时间,他便又发现了一个情况。

只见他在方程的第三行和第五行边画了两根线,又打了个问号。

表情若有所思:

“似乎.......”

谷邼

“这张纸片的复合方程组,可以分成三个部分计算?”

众所周知。

正则化理论,最早是为解决不适定问题而提出的。

长期以来人们认为,从实际问题归结出的数学问题总是适定的。

早在20世纪初。

hadamard便观察到了一个现象:

在一些很一般的情况下,求解线性方程的问题是不适定的。

即使方程存在唯一解,如果方程的右边发生一个任意小的扰动,都会导致方程的解有一个很大的变化。

在这种情况下。

如果最小化方程两边之差的一个范函,并不能获得方程的一个近似解。

到了20世纪60年代。

tikhonov,ivanov和phillips又发现了最小化误差范函的加正则项。

即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。

换而言之。

第一部分的方程组,其实是一个描述渐变区域的序列集合。

甚至可能是......

图像?

想到这里。

徐云顿时来了兴趣。

从4d/b2可以判断,这应该是一个涉及到旋转曲面的问题。

第二行的∑(jik=s)n(jik=q)(xi)(wj)则可以确定曲面与经线成了某个定角。

既然是定角,那么就可以假设定模型λ=( a , b ,π),以及观测序列o =( o1 , o2 ,..., ot )。

那么就有α1(i)=πibi(o1), i=1,2,...,n

αt+1(i)=[j=1∑nαt(i)aji]bi(ot+1), i=1,2,...,n

十五分钟后。

上一章 返回目录 下一章