第二百五十七章 见证奇迹吧!(上)

作者:新手钓鱼人 加入书签推荐本书

程了吗?

想到这里。

几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。

说起加速度,首先就要说说它的概念:

这个是用来衡量速度变化快慢的量。

加速度嘛,肯定是速度加得越快,加速度的值就越大。

比如我们经常可以听到的“我要加速啦”等等。

假如一辆车第1秒的速度是2m/s,第2秒的速度是4m/s。

那么它的加速度就是用速度的差(4-2=2)除以时间差(2-1=1),结果就是2m/s??。

再来回想一下,一辆车的速度是怎么求出来的?

当然是用距离的差来除以时间差得出的数值。

比如一辆车第1秒钟距离起点20米,第2秒钟距离起点50米。

那么它的速度就是用距离的差(50-20=30)除以时间差(2-1=1),结果就是30m/s。

不知道大家从这两个例子里发现了什么没有?

没错!

用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。

那么......

如果把这两个过程合到一块呢?

那是不是就可以说:

距离的差除以一次时间差,再除以一次时间差就可以得到加速度?

当然了。

这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。

如果把距离看作关于时间的函数,那么对这个函数求一次导数:

就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、

对速度的函数再求一次导数,就得到了加速度的表示。

鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。

是的。

之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置!

所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。

因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导??f/??t,再求一次偏导数就加个2上去。

因此很快。

包括法拉第在内,所有大佬们都先后写下了一个数值:

加速度a=????f/??t??。

而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了:

f=t·sin(θ+Δθ)-t·

上一章 返回目录 下一章