第二十四章首日竞赛

作者:疯子C 加入书签推荐本书

k、l、m。最后作出圆Г。

随后以直线pq与圆Г相切,相切点m,然后通过弦切角定理得出∠qmk=∠mlk。由于点k、m分别是bp、pq的中点,所以km∥bq,从而得出∠qmk=∠aqp。

因此得到∠mlk=∠aqp。

同理,∠mkl=∠apq。

根据角的相等,得到△mkl∽△apo,从而得到mk/ml=ap/aq

因为k、l、m分别是线段bp、cq、pq的中点,所以得到km=bq/2,lm=cp/2,将此带入上式得bq/cp=ap/aq,将式子转为ap·cp=aq·bq。通过圆幂定理知op2=oa2-ap·cp=oa2-aq·bq=oq2

所以,得出结论op=oq。

秦元清连检查都没有检查,将抽向的数学问题转为图像,这个是他擅长的地方,他有十全的把握证明。

紧接着秦元清看向第三题,“3、s1,s2,s3,......是严格递增的正整数数列,并且它的子数列ss1、ss2、ss3,.....和ss1+1,ss2+1,ss3+1......都是等差数列。证明:s1,s2,s3......是一个等差数列。”

看着这一题,秦元清微皱起眉头,这一题明显比前面两道题难得多,秦元清将已知条件稍微捋了一下,这一道题融合了等差数列、以及转换法。

秦元清一步一步地展开,通过数列以及子数列都是严格的递增的正整数数列,设ssk=a+(k-1)d1,ssk+1=b+(k-1)d2(k=1,2......,a、b、d1、d2∈n+)。

将问题转为函数、数列后,以sk<sk+1<sk+1及{sn}的单调性,知对任意的正整数k,有ssk<ssk+1≤ssk+1。即a+(k-1)d1<b+(k-1)d2≤a+kd1

因此a-b≤(k-1)(d2-d1)≤a+d1-b。由k的任意性知d2-d1=0,得到d2=d1。。。。。。

当秦元清写下证明结论,摸了一下额头,发现已经冒汗了,轻轻地吐出一口浊气。

随后秦元清站了起来,做了个交卷的手势。监考官走到他面前,将他的考卷装入文件袋密封。

秦元清轻松自若的离开考场,毫无压力。既然作答了,那么就不会有错。

当秦元清离开考场,才知道他是第一个交卷的,华夏奥数队的队员都还没交卷,其他国家的奥数队也都还没有一个交卷。

“首日竞考感觉如何?”副领队看到秦元清,连忙问道。

“一般般啦,很轻松!”秦元清潇洒地摆摆手:“还没有集训考试难,放心,42分跑不了!”

副领队闻言顿

上一章 返回目录 下一章