捡了起来,笑着说了一句,不过,随后他便说道:“当然,在大多数人眼中,这也仅仅只是一个玩具。”
“不过,在我的眼中,或者各位研究拓扑学的朋友们眼中,这是一个很经典的一维拓扑同胚体。”
“现在,就让我们先尝试用数字来描述一下它。”
林晓说着,ppt也随之翻页,出现了从数学上对slinky这个几何图形的描述。
而后他说道:“霍奇猜想研究各个维度下的拓扑同胚的多项式解集。”
“而对于(1,1)类的霍奇猜想,已经在1924年由lefschetz证明,也即是说霍奇猜想对于h^2成立,霍奇提出这个猜想,也是基于lefschetz的证明。”
“那么,我手中的这个玩具,作为一个一维流形,它对于霍奇猜想,显然是能够成立的。”
“但是,我们该如何将它拓展到更高维度呢?”
林晓提出的问题,引起了下面所有人的思考。
是啊,该如何拓展到更高维度呢?
这时候林晓一笑,ppt再次翻页,回归到了他报告上面最后的那几行式子。
【h^2(s2,z/2(1))≌h^2?et(s2,c,z/2(1))……】
“现在,大家请看这几行式子。”
底下的数学家们顿时露出了恍然之色。
这几行式子……
可不就是从h^2的情况下开始讨论的吗?
如果这么说的话……
所有数学家们都顿时心中一震,激动地看向林晓,这是否就意味着,霍奇猜想的证明,将不再遥远?
那么,林晓接下来是否就是要,去突破这个奇迹?
他们顿时都看向了林晓,期待着他接下来的话。
但就在这个时候,ppt再度翻了一页。
而这一页,却是一个大大的实时时间,现在是12点25分21秒,距离本场报告结束,还有不到5分钟。
此外,在这个实时时间的下面,还有一行字。
所有人都眯起眼睛,看向了这行字:我现在已经有了一个绝妙的方法,将低维的情况拓展到高维,但由于时间不够,所以……
“那么谢谢各位,我的讲述就到此为止了。”林晓笑呵呵地说道。
众人:“????”
都讲到这里了,你还玩费马那一套?
你知不知道费马当年要不是交通不便,也会被打的啊?
而底下的安德鲁·怀尔斯也是愣了起来,随后朝林晓比了个大拇指。
好家伙,这小子玩的比他牛。
连费马的招数都用上了!
可是,林晓