第一百四十四章 让人说不出话的报告,天堂的喜悦以及没落的结局

作者:不吃小南瓜 加入书签推荐本书

请比尔卡尔先生不吝赐教。”

比尔卡尔也很客气的说了几句。

他们随后就谈到了各自的研究,王浩随口说在研究ns方程,顿时引起了很多人注意。

这个课题可不是一般数学家敢触碰的。

ns方程是千禧年七大数学猜想之一,其难度自然是非常高的。

邱成文听了以后,都觉得有些诧异,他感觉王浩的研究速度太快了,好像才刚完成角谷猜想的证明,又做了眼前复杂的物理分析,结果又转到了ns方程?

他评价了一句,“ns方程,这个方向的内容很多,而且是个大方向。”

“做这种研究一定要耐心,慢慢来,没有成果不要紧,坚持住才最重要。”

ns方程方向的研究,倒不是一定要破解世界难题,在世界难题的方向上有进展,也都是重大成果。

这不是一个简单的数学问题。

比如,角谷猜想,说白了就是一个数学猜想,没有什么特别的意义。

哥德巴赫猜想也一样,说起难度,当然是世界公认的,但实际上就是一个数学题目而已。

ns方程就不一样了。

千禧年七大数学猜想,每一个都是非常重要的,其重要性体现在应用上,ns方程的主要应用就是流体力学,它反映了粘性流体流动的基本力学规律。

只要是这个方向的工作,就肯定会接触到ns方程。

其他千禧年数学猜想也是一样的,都是在科技上有非常重要的应用,正因为如此,研究才非常有意义。

当然,做ns方程方向的研究,并不意味着一定要破解难题。

其他人倒是理解王浩为什么会选择ns方程,因为他本来就擅长偏微分方程,甚至可以说‘出身偏微分方程’。

ns方程就是一类经典的非线性偏微分方程。

……

下午,报告继续。

报告进入到了数学分析阶段,数学分析也是难度最高、最重要的阶段。

数学分析是以计算机分析结果作为基础的,主体就是利用塑造函数来进行图像分析。

难点,就在这里。

函数塑造可不是容易的事情。

当真正进入到复杂函数的塑造讲解时,好多人也理解了,为什么上午的时候,王浩可以那么快完成函数的塑造。

相对于正在讲解的内容来说,上午塑造的函数就只是个小函数而已。

这其中的差别就和解三次方程和一次方程的区别,指数层次都感觉不一样了。

他们不确定函数塑造是否正确,但能肯定王浩绝对是一个,利用塑造函数来做数据分析的专家。

利用塑造函数来做数据分析,是一个很有

上一章 返回目录 下一章