第268章秦9韶伽瓦罗型人才

作者:桔子泛泛 加入书签推荐本书

自己把证明抄出来,上面的家伙就一定能看懂。

稍一斟酌他开口道:“我不仅知道所有正整数都可以用三个三角形数表示,还知道可以用四个正方形数表示,或者五个五边形数表示,六个六边形数……只是证明过程太复杂,一时半会说不清。”

虽然情商不高,复制一下当年费马装逼的套路还是不难的。

甘大地再一次木在当场。qq

为什么,因为他后续的问题就是这啊,还没说出口就让叶寒抢答了。

而既然对方想都不想就给出了定论,虽然没有证明过程,想来是真对这个问题研究颇深的。这……还要继续下去吗?

甘大地一时间两难。

若说他脸皮厚,绝对是够厚的。

但厚也有极限。关键是接触以来,叶寒对数术之道的认知远远超乎他想象,在最得意的问题上接二连三被暴击,任他是甘大地,也有点撑不住了。

生出叶寒之学如渊如海,自己这点水性根本够不着底之感。

甘大地发呆的功夫,便宜孙子写的纸条也由他麾下一名敢死队员递到了叶寒的手中。

在接到纸条之前,叶寒对甘大地是隐隐生出了爱才之心的。

想象一下,一个人呆在这上不着天下不着地的悬崖上,仅靠手边的碎石算筹,一会儿摆出了欧拉的自然数和结果,一会儿深入探究了形数领域……

要知道这一切都是自学摸索,没什么参考资料。这要有资料有人指导,岂不妥妥的一颗冉冉升起的数学新星?

【……】

不过当一目几十行看完便宜孙子纸条上的内容,他的爱才之心……更盛了。

感情这是一个秦九韶、伽瓦罗型的人才啊。

秦九韶,南宋数学大家,在中国剩余定理、三斜求积术、秦九韶算法上,都做出了世界级别的贡献。bbc关于数学历史的记录片,中国其他数学家提的很少,就寥寥几句,唯独对于秦九韶,称得上浓墨重彩。

不过这家伙怎么说呢?贪墨、残暴、结党营私……一切形容贪官的词搁在他身上都不为过。

他的所有数学成就几乎都是在丁忧和罢官的空档做出来的……一旦有官做,这家伙立刻就不务正业开始为非作歹了。

至于伽瓦罗,这确实是一个天才,也非秦九韶那样的贪墨者。但由于家庭的原因,他成了一个激进的运动派,在法国大革命的动荡时期,进出监狱成了家常便饭,虽然死的时候才21岁。

很多人说如果他不死那么早,以他21岁便能开创群论的天赋,至少又一个高斯或欧拉!

但叶寒却觉得未必。

因为这家伙根本不是高斯或欧拉那样会为数学奉献一生的人,如果他一直犯事被关监狱,可能成就会比欧拉或高斯更高,但如果是自由的,而且

上一章 返回目录 下一章