第337章保罗·潘勒韦的奇点理论

作者:蔡泽禹 加入书签推荐本书

这是一种我们能想象到的最扁的椭圆,但它没有彻底变扁,没有变成欧拉所说的线段。拉普拉斯始终在他的言论中保持着一种模棱两可,他说“物体达到焦点”,但严格来说物体不会经过焦点,因为它的轨迹是一个椭圆。最后,这个惊人的言论虽然有明显的笔误,但是人们认为他与达朗贝尔的观点是一致的,后者的结论在很长时间内都是主流观点。

在《数学史》(histoire des mathematiques,1758)的第二卷中,让·艾蒂安·蒙蒂克拉(jean-étienne montucla)也对质点p向引力中心点o直线运动的问题进行了研究。他提到了牛顿,但没有提及欧拉,他也认为这种运动是一种极限情况下的椭圆运动,并总结道:“物体不会越过(引力中心)。”但是又他补充道:“我们也能确定它不会回头。因为没有任何能让它反向运动的因素。”蒙蒂克拉明确地反对了欧拉的结论,但是他也早就表达了对达朗贝尔结论的反对,因为在他看来,到达点o的质点p会停在那里。

这个令人意想不到的观点,甚至比欧拉的观点更让人困扰,因为这意味着要在瞬间消除一个理论上无穷大的速度。实际上,蒙蒂克拉发现,假设与点o相距r的点p在一个与r2成反比的力f的作用下,不断靠近点o,那么当r趋近于0时,它的速度v会比这个力f增长得慢。因为,这个速度仅与r成反比。最后这一步论证是错误的,因为速度v实际上近似地与√r成反比。不过这一修正并不影响蒙蒂克拉的结论,也就是说,在点o无穷大的引力和速度的较量中,引力占据了上风。我们猜测,在蒙蒂克拉的时代,很少有人能够接受这种可能。然而,在随后的一个世纪他的结论被再次提起,依据是点p经过点o后速度变成了虚数,不过这一论证也被用来支持欧拉的结论,结果这个虚数速度是虚假的,因为计算出了错。

点状黑洞

这些理论讨论一直乏人关心,因为引力作用下的直线运动,在天文学上没什么实际应用价值,所以力学研究者并不放在心上,更别说这个物体落到引力中心的纯理论问题了。所以这个问题的最终答案很晚才被揭开,直到1930年,保罗·潘勒韦(paul painleve)才在《巴黎综合理工大学力学教程》(urs de mecanique professea l’éle polytechnique)的第一卷中做出解释。

对于以无穷大的速度到达引力中心的运动质点,他指出,在这一瞬间之后,“问题就无法继续讨论下去了。”他没有像蒙蒂克拉那样尝试用数学方法证明质点会停止在引力中心,尽管后者看似在所有人之前找到了正确答案。质点会停止本身就是力学理论的一部分,而潘勒韦宣称在动点到达引力中心之后,经典力学就无能为力了。对于这一问题,点必须在引力中心停止,而所有对于此后运动情况的猜测都不具有科学价值。

欧拉和达朗贝尔并没有预见到这样的结果

上一章 返回目录 下一章