第98章怀尔斯破解费马大定理

作者:蔡泽禹 加入书签推荐本书

友知道证明存在缺陷。而怀尔斯根本没有证明费马大定理的流言开始传开,数学家们要求他公开论文原稿。如果存在错误,同行们寄希望于某个人能魔术般地看清并修复这些缺陷。

但怀尔斯不准备让他人轻易攫取这份荣誉。他又重回阁楼,重回到一种孤独的状态,甚至一直担任怀尔斯非官方新闻联络人的ribet也无法联系到他。普林斯顿的数学教授、怀尔斯的朋友peter sarnak说:“不知怎么的,人们的想法是‘你要证明费马大定理,如果不证明出来,你就有麻烦了。’”

sarnak劝说怀尔斯去找个合作者一起修复这个缺陷,即使仅仅“能让他的想法从过于熟悉的人身上脱离开去。”怀尔斯电话邀请了他以前的学生richard taylor。taylor当时已经是剑桥大学著名的数论学家。起初,他们尝试了taylor所说的“局部化处理”:对怀尔斯不完备证明中使用的方法进行小的改良,从而修正错误。

但这却于事无补。taylor回忆说,接着他们决定“扩大范围,撒张更大的网,来找寻其他的方法”。整个春季再到夏季,他们一直在工作,甚至常常在深夜里通过电话长时间讨论。taylor说:“我从来没有收到过如此昂贵的电话账单。”

但是到1994年9月,他们的努力仍然没有任何进展。在准备向世界承认失败的前一刻,怀尔斯决定“最后一次检查”最初的方法结构,试图确切地找出它不能奏效的原因。在

c的记录片the proof中,他讲述了接下来的故事。“突然间,完全出乎意料,我有了一个难以置信的发现。”在曾经失败的技术的余烬中,恰恰有用来证明另一个猜想的工具。那个工具就是“岩泽理论”(iwasawa theory)。他在三年前放弃了这种方法,但现在他能用它彻底地弥补缺陷,从而证明了费马大定理。“它美得无法形容,它是那么简洁而优雅。我呆望着它,难以置信。”

凭借着这一理论,怀尔斯和taylor很快就在几个星期内修复了论文中的漏洞。1995年5月,他们在国际顶尖期刊《数学年刊》(annals of mathematics)上发布了集合所有工作的两篇论文。最终的证明和附带的讨论长达130页。

这是不是费马没有写下的证明呢?也就是那个因为《算术》页边太窄而写不下的“美妙的证法”?唯一合理的答案是“no”。为了证明费马大定理,怀尔斯使用了最新的数学工具和思想,它们的诞生远远晚于费马的时代。大多数数学家认为费马的定理是在错误中总结的。如果他确信自己知道证明方法,很有可能只是迷惑了自己。

但重要的不是费马个人的对和错。古希腊人点燃了数论领域的源,而费马的一次误导性的吹嘘,把奄奄一息的火焰煽成了数学的一个主要分支。他不完美的天才留给我们的数学遗产远远比给他如何得出猜想的琐碎小事更为重要。

上一章 返回目录 下一章