第560章陶哲轩谈什么是好的数学

作者:蔡泽禹 加入书签推荐本书

脑的数学家去进行探究以避免遗漏。比方说,在已经发展成熟的领域,比较合理的做法也许是追求系统方案,以严格的方式发展普遍理论,稳妥地沿用卓有成效的方法及业已确立的直觉;而在较新的、不太稳定的领域,更应该强调的也许是提出和解决猜想,尝试不同的方法,以及在一定程度上依赖不严格的启示和模拟。因此,从策略上讲比较合理的做法是,在每个领域内就数学进展中什么质量最应该受到鼓励做一个起码是部分的(但与时俱进的)调查,以便在该领域的每个发展阶段都能最有效地发展和推进该领域。比方说,某个领域也许急需解决一些紧迫的问题;另一个领域也许在翘首以待一个可以理顺大量已有成果的理论框架,或一个宏大的方案或一系列猜想来激发新的结果;其他领域则也许会从对关键定理的新的、更简单及更概念化的证明中获益匪浅;而更多的领域也许需要更大的公开性,以及关于其课题的透彻介绍,以吸引更多的兴趣和参与。因此,对什么是好数学的定义会并且也应当高度依赖一个领域自身的状况。这种定义还应当不断地得到更新与争论,无论是在领域内还是通过旁观者。如前所述,有关一个领域应当如何发展的调查,若不及时检验和更正,很有可能会导致该领域内的不平衡。

上面的讨论似乎表明评价数学质量虽然重要,却是一件复杂得毫无希望的事情,特别是由于许多好的数学成就在上述某些质量上或许得分很高,在其他质量上却不然;同时,这些质量中有许多是主观而难以精确度量的(除非是事后诸葛)。然而,一个令人瞩目的现象是:上述一种意义上的好数学往往倾向于导致许多其他意义上的好数学,由此产生了一个试探性的猜测,即有关高质量数学的普遍观念也许毕竟还是存在的,上述所有特定衡量标准都代表了发现新数学的不同途径,或一个数学故事发展过程中的不同阶段或方面。

上一章 返回目录 下一章