目,虽然定理本身并不如此,所以我对用比zfc框架更少的条件证明大基数上的理不那么感兴趣。对于我上面的意见足以使我把大基数放在比内模型更高的位置,完全认可大基数在协调性证明中的作用,并且把大基数和决定性公理ad周围的观点陈述做比较,比如:从“zfc+超紧致基数”的协调性得到的协调性证明,怎么把条件的协调性小心的弱化,而结果却没有实质性的变化?我认为这是可行的。比如,从”zf+依赖选择公理+决定性公理+正则性“开始怎样?不,对于我它只是一个推论,而woodin或多或少持有和我相反的观点。既然我自己的直觉没有超出zfc框架或zfc+大基数协调性框架,我认为这些定理都是大基数非常有趣的推论。
可能下文的类比可以解释我的观点,我们用标准的美国公民做类比,因为大家都熟悉,因此一个典型的集合论全体集合域和典型的美国人约翰史密斯先生对应,我的典型的全体集合域是很有趣的,它有广泛的区间在它里面广义连续统假设成立,但其他的定理却严重冲突,例子很多,比如——很多基数的souslin树是存在的,很多基数上的每个aronszajn树是special的,很多可测基数和一个边缘个例的非超紧致的巨基数是存在的,这些定理和约翰史密斯先生的事一样合理:在纽约北部长大,在加利福利亚接收高等教育,在大学的第三年肆业,住在中西部的郊区,大部分英国撒克逊血统,兼有少些爱尔兰、意大利、西班牙、黑人血统,和妻子分居有2.4个小孩。“得了,你怎么能没有连续统假设?你不能有的地方说对有的地方又说错!”,是的,但是约翰史密斯先生也不能有2.4个小孩,连续统假设和2.4个小孩一样不自然。虚构的美国标准公民约翰史密斯的情况和典型的全体集合域是很匹配的。受到这种类比的启发,可构成集l像是3k党章程某个章节的标题——一个值得研究的个例,但是可能不具有代表性。你也许会问:”这是否意味着你是个形式主义者而不是以前暗示的那样是个理想主义者?“,不,我是一个集合世界里的虔诚的理想主义者,但是我不能放弃对独立性现象的研究。
对于决定性公理,我们在下文话题c讨论:
话题 c
组合的,语义的!!!!!
语法的!
在我看来,对n阶存在量词定义的实数集非常感兴趣的决定性公理学派完全站在语法这一面,根据洛杉矶学派(译注:加州大学洛杉矶分校ucla,加州理工学院caltech一批活跃的集合论学家,有martin,kechris等人),决定性公理加上依赖选择公理在实数集的可构成集合里确实是正确的,当真实的全体集合域用符合直觉的方式满足这条解决所有大问题的漂亮的公理的时候,我们为什么还要在如此弱的zfc框架下证明定理呢?好,我不是对问题的语法方面感兴趣,但是严肃的来说,我同意决定性公理是一条漂亮的公理,在力迫法中有一席之地,并