jensen magidor 我自己
协调性 40 40 30
在可构成性公理v=l下 65 50 35
在大基数下 50 60 40
在zfc下 100 100 100
我认为对可构成集l的研究是zfc框架下工作的一个很好的灵感来源,可构成集l是一个处在第二极端位置的个例,就像diamond定理和square定理的个例一样,举例来说,从广义连续统假设的个例可以证明diamond定理,学习了jensen的覆盖引理后,我想根据sharp是否存在,通过dichotomy或其他的性质证明组合性的定理是件奇妙的事(见下文话题 c),这点在文[sh 71]有暗示,在文[sh 111]、[shst 419]中实现,但是迄今为止我的这些工作没有发挥特别的影响力,从zfc框架的角度来看对内模型的理论形成了很高的期望,但是我最近了解到,jensen有更高的期望:找到一些不存在sharp的内模型,从这些内模型我们可以得到集合论的终极理论,通过两步可以理解集合论的一切——首先分析内模型,然后把真正的集合论简化到内模型,看起来很好,但我不相信这样行的通。
从大基数的角度来看,大基数的存在性的陈述是“半公理”的,大基数的支持者可能会说:看看累积的层次是怎样形成的,我们为什么要在得到了所有继承有限集后在可数阶段停下来呢?我们也不该停在zermelo集合论的阶段,停在第omega个基数的阶段,所以我们为什么要在第一个不可达基数,第一个马洛基数,第一个弱紧致基数,第一个可测基数的地方停下来?我们仍在继续寻找正确的公理,它们对集合甚至实数有很深的影响,这些公理是让人迷惑的,至少这些半公理是这样。
一个非常有趣的现象,这些大基数公理,比如那些自然出现的,是线性排序的,这证明它们是自然的,虽然我们从各种组合变形法则,从各种简单陈述的协调性得到这些大基数公理,但从某种范围看来所有这些自然的法则和陈述和一些大基数是等价协调的的,所有这些证明了它们的自然性。这样就提出了一个问题:
问题:是否有定理可以解释我们想象的这些性质是比我们已经理解的性质更加一致?
直觉告诉我,除了一些人造的全体集合域外,幂集公理和置换公理像选择公理一样是成立的,然而直觉却没有告诉我多少关于不可达基数存在性的信息,根据我的经验,数学很好但没有集合论背景的人非正式的提到zfc框架的时候是接受这个框架的。包括选择公理,但不包括大基数。你可以用从一些复杂的域到它自身映射的函数的集合组成的类,承认笛卡儿集的非空性,没有人会注意这些,没有人会为一个可数迭代形成幂集的算子感到不安,因此大基数的存在性是一个很自然也很有趣的陈述,并且大基数上的定理作为推论也很引人注