第98章怀尔斯破解费马大定理

作者:蔡泽禹 加入书签推荐本书

复数平面内上半平面中的值,并且这种函数在一个在模型群的群运算之下,会变成某种类型的函数方程,并且通过函数计算出的值也会呈现出某个增长趋势。模形式理论属于数论的范畴。模形式也出现在其他领域,例如代数拓扑和弦理论。

伽罗瓦群:在数学中,特别是抽象代数理论中,由法国数学家埃瓦里斯特·伽罗瓦(évariste galois)得名的伽罗瓦理论提供了域论和群论之间的联系。应用伽罗瓦理论,域论中的一些问题可以化简为更简单易懂的群论问题。

这番讲话令在座的人,乃至全世界震惊。第二天这件事就登上了《纽约时报》的头版。怀尔斯一时间名声大振。服装零售商gap邀请怀尔斯参与设计一款新的牛仔裤,但最终被他拒绝。他被《人物》评为“年度最有魅力的25位人物”之一,在列的还有戴安娜王妃、迈克尔·杰克逊和比尔·克林顿。著名撰稿人ba

ara walters联系他进行访问,而怀尔斯回复道:“ba

ara walters是谁?”

但庆祝并没有持续多久。一个证明被提出之后,必须经过仔细的检查和验证才可能被承认。怀尔斯向世界顶级数学期刊inventiones mathematicae提交了长达200页的证明。该期刊的编辑随后将这份手稿分发给6位审稿人,其中一位是普林斯顿大学的数学家nick katz。

katz和他的法国同事luc illusie一起,花了两个月时间,仔细检查了所负责部分的每个逻辑环节。每当他们会遇到一些无法理解的论证时,katz便会给怀尔斯发邮件,而怀尔斯会回复澄清问题。但到了8月底,怀尔斯对一个问题的解释并不能说服两位审稿人。在进一步研究后,怀尔斯明白katz找到了论文数学逻辑框架中的一个缺陷。起初,简单的修复看似可行。但当怀尔斯着手修复缺陷时,逻辑框架的碎片开始脱落。

怀尔斯意识到,这不只是一个浅显简单的失误,它甚至可能超出一个可修复缺陷的范畴,这时他变得愈发惶恐。如果它是一道裂缝,一个无法修补的缺陷,那将使得整个大定理的证明崩塌殆尽。

数学史上的黯淡的一页

费马大定理具有不可思议的简洁性,它由费马于1637年提出。当时他正在阅读古希腊数学家丢番图(diophantus)编纂的《算术》(arithmetica)。书中有关于毕达哥拉斯定理(勾股定理)的讨论。如我们所学,直角三角形斜边长的平方是两直角边的平方和。用数学形式可以表示为x2 + y2 = z2,其中x、y、z分别是三角形中两条直角边和斜边长。

丢番图找到了一些满足条件的正整数解,将其命名为“勾股数组”,并且证明了存在无穷多对勾股数组(严格来说,存在无穷多个三个数互质的素勾股数组)。最简单的例子是直角三角形的(3, 4, 5

上一章 返回目录 下一章